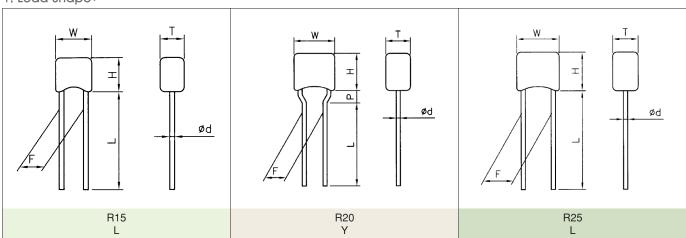
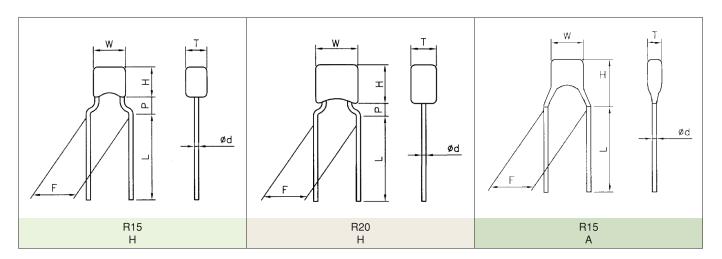

Application

NPO: Temperature compensation type, have little or no change in capacitance with variation in temperature. Hence, they are used in radio-frequency oscillators, precision timing circuits, ultra stable amplifiers, etc.

X7R: Temperature stable type for by-pass and decoupling in radio and television receivers, computers servo systems. Audio tone, and coupling, etc., where moderate capacitance variations are permissible and dissipation factor is not critical.

Z5U/Y5V: General type for by-pass and filtering applications.


Construction



Part No. Designation

R15	Z	104	M		1H		L	5	L	
SIZE	T.C	Capacitance-Code	Tolerance		Voltage		Lead shape Lead space		Package-Lead-length	
R15	N=NPO	Two significant digits	A=±0.05PF	F=±1%	1C=16V 1E=25V		L=Straight	2=2.54±0.8	R=Tape/Reel	
R20	W=X7R	+NO. of zeros.	B=±0.10PF	G=±2%	1H=50V	1J=63V	Y=Inside	5=5.08±0.8	B=Tape/Box	
R25	Z=Z5U	Example	C=±0.25PF J=±5%		2A=100V		Crimp	(mm)	6=6±1mm	
	Y=Y5V	102=1000pf	D=±0.50PF	K=±10%			H=High		L=25.4mm(min)	
		223=22000pf		M=±20%			seated			
		104=100000pf	Z=+80/-20%				A=Slope			

1. Lead Shape:

Multilayer Ceramic Capacitors EPOXY COATED RADIAL TYPE

2. Lead Space (F)

Code	LEAD SPACE (mm/inch)					
2	2.54±0.8	0.1±0.032				
5	5.08±0.8	0.2±0.032				

3. Lead Length (L)

Code	LEAD LENGTH	REMARK			
6	6mm±1mm	Specified lead length			
L	25.4mm (min)	upon request.			

4. Body Size & Dimension

Size	Lead style available	Capacitance Range				Dimensions (mm)					
code		NPO	X7R	Z5U	Y5V	H max	W max	T max.	d±0.05	F±0.8	Р
R15	L	50V: 0.47-4700pF	50V: 220pF-0.33uF	50V: 0.01uF - 0.22uF	50V: 0.01-0.33uF	4.3	4.3	3.0	0.5	2.54	
	H,A	100V: 0.47-3900pF	100V: 220pF-0.1uF	100V: 220uF - 1uF	25V: 0.47-1.0uF	4.3	H=4.3 A=5.0	3.0	0.5	5.08	2.0
R20	Υ	25V: 12 – 47nF 50V:	25V: 1.0-10uF 50V:	50V: 0.22uF - 1.0uF	16V: 10-22uF 25V:	6.0	6.0	4.0	0.5	2.54	2.0
	Н	2200pF-0.01uF 100V: 1nF – 0.01uF	0.1-2.2uF 100V: 0.1-1.0uF	100V: 0.01uF - 0.22uF	2.2-4.7uF 50V: 0.47-2.2uF	6.0	6.0	4.0	0.5	5.08	2.0
R25	L	25V: 0.1uF 50V & 100V 0.012-0.033uF	100V: 0.22 – 2.2uF	100V: 0.47uF – 2.2uF	16V: 47uF 25V: 22uF 50V: 10uF	6.5	6.5	4.5	0.5	5.08	

Typical Performance Characteristics

Specifications

Temperature coefficient

• NPO: ± 30PPM/°C, -55°C to +125°C

• X7R: ± 15%, -55°C to +125°C

• Z5U: +22%,-56%, +10°C to +85°C

• Y5V: +22%, -82%, -30°C to +85°C

Capacitance test 25°C

• NPO: 1 VRMS max at 1 KHz (1 MHz for 1000pF or less)

X7R: 1 VRMS max at 1 KHzZ5U: 1 VRMS max at 1 KHz

• Y5V: 1 VRMS max at 1 KHz

5.0% 10V & 6.3V

Dissipation Factor 25°C (see exception at last page)

NPO: 0.15% max at 1KHz, 1VRMS max (1 MHz for 1000pF or less)

Z5U: 5% max (at 1KHz, 1VRMS max)

 X7R: (at 1KHz, 1VRMS max)
 Y5V: (at 1KHz, 1VRMS max)

 Max
 Rated voltage

 2.5%
 ≥50V

 3.5%
 25V & 16V

 7%
 25V & 16V

10% 10V & 6.3V

Dielectric strength 25°C (Flash Test)

- NPO and X7R: 300% rated voltage for 5 seconds with 50 mA. max charging current.
- Z5U and Y5V: 250% rated voltage for 5 seconds with 50 mA. max charging current

LifeTest:

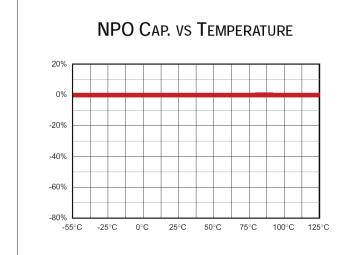
(1000 hrs at max temp. applied with Flash test voltage Recovery: 6-24 hrs for NPO and 24 \pm 2 hrs for X7R & Z5U)

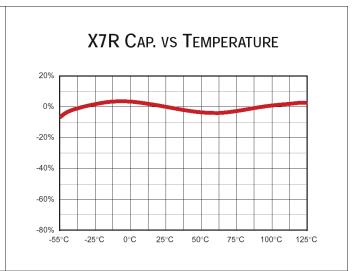
NPO:
 ≤±3% at 200% rated voltage, 125°C

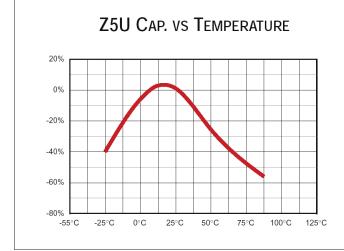
X7R: ≤ ±3% at 200% rated voltage, 125°C

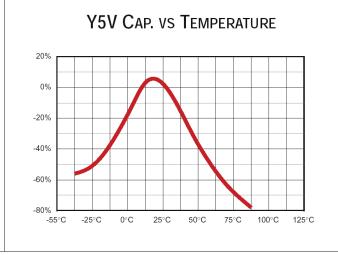
Z5U: ≤ ±3% at 200% rated voltage, 85°C

Y5V: ≤ ±3% at 200% rated voltage, 85°C


Insulation Resistance after 60 sec., charging at rated voltage, 25° C, 55% R.H. max


• NPO: $100G\Omega$ or $1000M\Omega$ -uF whichever is less • X7R : $10G\Omega$ or $100M\Omega$ -uF whichever is less • Z5U : $10G\Omega$ or $100M\Omega$ -uF whichever is less


• Y5V : $10G\Omega$ or $1000M\Omega$ -uF whichever is less



Temperature Charactersitcs Specifications

