Features

- Broadband Performance
- Low Loss @ 2.7 GHz :

$$
\begin{aligned}
& \mathrm{TX}=0.25 \mathrm{~dB} \\
& \mathrm{RX}=0.35 \mathrm{~dB}
\end{aligned}
$$

- High Isolation @ 2.7 GHz :

$$
\mathrm{RX}=44 \mathrm{~dB}
$$

- Power Handling @ 2.7 GHz :

$$
200 \text { W CW @ }+85^{\circ} \mathrm{C}
$$

$$
122 \text { W CW @ }+120^{\circ} \mathrm{C}
$$

- Lead-Free 5 mm 20-Lead HQFN Package
- RoHS* Compliant
- Designed for High Power TDD-LTE Applications

Description

The MASW-011120 is a SPDT high power, broadband, high linearity, PIN diode T/R switch for $0.03-6.0 \mathrm{GHz}$ high power applications. The device is provided in an industry standard lead free 5 mm HQFN plastic package.

This device incorporates PIN diode die fabricated with a low loss, high isolation switching diode process.

MASW-011120 can be used in any application requiring a low-loss, high-isolation, and high-powerhanding SPDT.

Ordering Information ${ }^{1,2}$

Part Number	Package
MASW-011120-TR1000	1000 Piece Tape and Reel
MASW-011120-TR3000	3000 Piece Tape and Reel
MASW-011120-SMB	Sample Board

[^0]
Functional Schematic

Pin Configuration ${ }^{3}$

Pin \#	Pin Name	Function
$1,4,5,7,11,19$	GND	Ground
$2,6,8,10,13,14$, $15,16,18,20$	N/C	No Connection
3	ANT	RF Port
9	RX	RF Port
12	RX BIAS	RX Bias Input
17	TX	RF Port
21	Paddle	Ground ${ }^{4}$

3. MACOM recommends connecting all No Connection (N/C) pins to ground.
4. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.
[^1]
Electrical Specifications:

Freq. $=2.7 \mathrm{GHz}, 3.5 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$, Bias $=60 \mathrm{~V} / 0 \mathrm{~V}$. See Bias Table.

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss	ANT to TX ON @ 2.7 GHz ANT to TX ON @ 3.5 GHz ANT to RXON @ 2.7 GHz ANT to RX ON @ 3.5 GHz	dB	-	$\begin{aligned} & 0.25 \\ & 0.30 \\ & 0.35 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.50 \\ & 0.60 \\ & 0.70 \end{aligned}$
Isolation	ANT to RX (TX ON) @ 2.7 GHz ANT to RX (TX ON) @ 3.5 GHz ANT to TX (RX ON) @ 2.7 GHz ANT to TX (RX ON) @ 3.5 GHz	dB	$\begin{aligned} & 35 \\ & 35 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 44 \\ & 44 \\ & 15 \\ & 13 \end{aligned}$	-
ANT Return Loss	ANT to RX ON ANT to TX ON	dB	-	$\begin{aligned} & 23 \\ & 25 \end{aligned}$	-
TX Return Loss	ANT to TX ON	dB	-	22	-
RX Return Loss	ANT to RX ON	dB	-	26	-
Input P0.1 dB ${ }^{5}$	ANT to TX ON	dBm	-	51	-
IIP3 TX	ANT to TX, $\mathrm{P}_{\text {IN }}=30 \mathrm{dBm}$	dBm	-	68	-
IIP3 RX	ANT to RX, $\mathrm{P}_{\text {IN }}=30 \mathrm{dBm}$	dBm	-	68.5	-
RF Input Power CW^{5} ANT to TX ON	$85^{\circ} \mathrm{C}$ @ $2.7 \mathrm{GHz} ; 100 \mathrm{~mA}$ $85^{\circ} \mathrm{C}$ @ $2.7 \mathrm{GHz} ; 200 \mathrm{~mA}$ $120^{\circ} \mathrm{C}$ @ $2.7 \mathrm{GHz} ; 100 \mathrm{~mA}$ $120^{\circ} \mathrm{C}$ @ $2.7 \mathrm{GHz} ; 200 \mathrm{~mA}$	W	-	$\begin{gathered} 145 \\ 200 \\ 97 \\ 122 \end{gathered}$	-
Switching Speed TX Ton TX Toff RX $T_{\text {ON }}$ RX Toff	$\mathrm{T}_{\text {ON }}-50 \%$ control to $90 \% \mathrm{RF}$ Toff -50% control to 10% RF	$\mu \mathrm{s}$	-	$\begin{aligned} & 0.5 \\ & 1.6 \\ & 0.3 \\ & 0.3 \end{aligned}$	-
Group Delay	-	ns	-	50	-
In-band Ripple	$\begin{gathered} 20 \mathrm{MHz} \\ 200 \mathrm{MHz} \end{gathered}$	dB	-	$\begin{gathered} 0.05 \\ 0.1 \\ \hline \end{gathered}$	-

5. Maximum source and load VSWR < 1.2:1.

Bias Table

Bias Table	TX	RX	RX BIAS	ANT
Pin	$\mathbf{1 7}$	$\mathbf{9}$	$\mathbf{1 2}$	$\mathbf{3}$
ANT to TX ON (Insertion Loss)	$(\mathrm{GND}),-100 \mathrm{~mA}^{6}$	$(+60 \mathrm{~V}), 10 \mathrm{~mA}^{6}$	$(\mathrm{GND}),-10 \mathrm{~mA}^{6}$	$+5 \mathrm{~V}, 100 \mathrm{~mA}^{6}$
ANT to RX (Isolation)	$(\mathrm{GND}),-100 \mathrm{~mA}^{6}$	$(+60 \mathrm{~V}), 10 \mathrm{~mA}^{6}$	$(\mathrm{GND}),-10 \mathrm{~mA}^{6}$	$+5 \mathrm{~V}, 100 \mathrm{~mA}^{6}$
ANT to RX ON (Insertion Loss)	$(+60 \mathrm{~V}), 0 \mathrm{~mA}$	$(\mathrm{GND}),-100 \mathrm{~mA}^{6}$	$(+60 \mathrm{~V}), 0 \mathrm{~mA}$	$+5 \mathrm{~V}, 100 \mathrm{~mA}^{6}$
ANT to TX (Isolation)	$(+60 \mathrm{~V}), 0 \mathrm{~mA}$	$(G N D),-100 \mathrm{~mA}^{6}$	$(+60 \mathrm{~V}), 0 \mathrm{~mA}$	$+5 \mathrm{~V}, 100 \mathrm{~mA}^{6}$

[^2]Maximum Operating Conditions ${ }^{7}$

Parameter	Operating Maximum
TX Forward Current	250 mA
RX Forward Current	250 mA
Reverse Voltage (RF \& DC)	200 V
ANT to TX Power CW	See Power Derating Curve
ANT to TX Peak Power (LTE Signal)	1000 W
Junction Temperature ${ }^{8,9}$	$+175^{\circ} \mathrm{C}$
Case (Paddle) Temperature	$-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

7. Exceeding these limits may cause permanent damage.
8. MACOM does not recommend sustained operation near these survivability limits.
9. Operating at nominal conditions with $\mathrm{T}_{J} \leq+175^{\circ} \mathrm{C}$ will ensure MTTF > 1×10^{6} hours.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Parameter	Rating	Standard
Human Body	500 V	ESDA / JEDEC
Model (HBM)	(Class 1B)	JS-001
Charged Device Model (CDM)	2000 V	JEDEC
(Class C7)	JESD22-C101	

Typical Performance Curves

ANT to TX Input Power Derating Curve @ 2.7 GHz

ANT to TX Input Power Derating Curve over Reverse Bias Voltage @ 2.7 GHz

ANT to TX Input Power Derating Curve over Frequency @ $120^{\circ} \mathrm{C}$ Case Temp

Typical Performance Curves over Temperature

All plots herein are taken with bias per the Bias Table on Page 2 unless otherwise specified.
S-parameters were measured using G-S-G probes on a sample board; reference planes are at the part's RF ports. The sample board and its layer stack-up are on page 7

ANT to TX Insertion Loss

ANT Return Loss in TX ON state

ANT to RX Insertion Loss

ANT Return Loss in RX ON state

RX Return Loss in RX ON state

Typical Performance Curves over Temperature

TX Return Loss in TX ON state

ANT to TX Isolation in RX ON state

ANT to TX Insertion Loss over Current @ $25^{\circ} \mathrm{C}$

ANT to RX Isolation in TX ON state @ 100 mA

ANT to RX Isolation in TX ON state, over RX Bias Current @ $25^{\circ} \mathrm{C}$

ANT to RX Insertion Loss over Current @ $25^{\circ} \mathrm{C}$

Sample Board

Optional part for probing, provided per request

PCB Layout Stack-Up

Dimensions are in inches.

To use the sample board: bias VCC at 5 V (current will be limited to 100 mA by on-board resistors R1, R2) and bias RX and TX according to the control table on page 8.

Sample Board Schematic (parts list on page 9)

Control Table

Configuration	VCC	RX	TX/RX_Bias
TX ON RX OFF	$5 \mathrm{~V}(100 \mathrm{~mA})$	$60 \mathrm{~V}(10 \mathrm{~mA})$	GND
TX OFF RX ON	$5 \mathrm{~V}(100 \mathrm{~mA})$	GND	60 V

Parts List

Component ID	Value	Package	Mfg. Par\#\#	Spec
U1	-	HQFN-20LD 5 mm	MASW-011120	-
L1, L2, L3, L4	33 nH	0603	LQW18AN33NJ8ZD	$>200 \mathrm{~mA}$
C1, C3, C7 ${ }^{10}$	10 pF	0505	$800 \mathrm{~A} 100 \mathrm{JT250X}$	High Freq
C2, C4, C6,C8, C12	22 pF	0603	600 S220FT250XT	High Freq
C24	$1 \mu \mathrm{~F}$	0805	C2012X7S2A105K125AB	High Freq
R1, R2	20Ω	1206	CRCW120620R0FKEA	0.25 W
R3, R4	$2.37 \mathrm{k} \Omega$	1210	ERJ-14NF2371U	-
R6, R10	0Ω	0603	-	-
J1-J5	RF CONN	SMA	$142-0761-821$	-
J6	DC CONN	$10-\mathrm{pin}$	-	Surmount

10. Required vertical mounting orientation of $\mathrm{C} 1, \mathrm{C} 3, \& \mathrm{C} 7$. Noted on PCB Layout on page 7.

Horizontal Electrode Orientation

Vertical
Electrode Orientation

Typical Performance Curves on the Sample Board over Temperature

ANT to TX Insertion Loss (PCB loss de-embedded)

ANT Return Loss in TX ON state

TX Return Loss in TX ON state

ANT to RX Insertion (PCB loss de-embedded)

ANT Return Loss in RX ON state

RX Return Loss in RX ON state

Typical Performance Curves on the Sample Board over Temperature

ANT to TX Insertion Loss over Current @ $25^{\circ} \mathrm{C}$, PCB Loss De-embedded

ANT to TX Isolation

ANT to RX Insertion Loss over Current @ $25^{\circ} \mathrm{C}$, PCB Loss De-embedded

ANT to RX Isolation

ANT to RX Isolation over Current @ $25^{\circ} \mathrm{C}$

Lead-Free 5 mm 20-Lead HQFN ${ }^{\dagger}$

[^3]MACOM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

[^0]: 1. Reference Application Note M513 for reel size information.
 2. All sample boards include 3 loose parts.
[^1]: * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

[^2]: 6. Currents level comply with the schematic on page 8.
[^3]: ${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity MSL level 1 requirements. Plating is NiPdAuAg.

