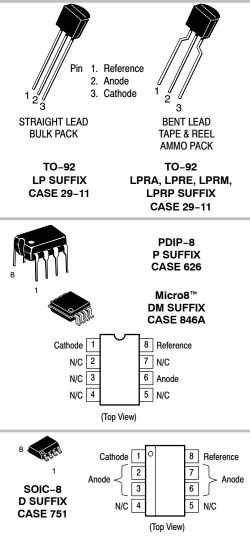
Programmable Precision References

The TL431A, B integrated circuits are three-terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from V_{ref} to 36 V with two external resistors. These devices exhibit a wide operating current range of 1.0 mA to 100 mA with a typical dynamic impedance of 0.22 Ω . The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 V reference makes it convenient to obtain a stable reference from 5.0 V logic supplies, and since the TL431A, B operates as a shunt regulator, it can be used as either a positive or negative voltage reference.


Features

- Programmable Output Voltage to 36 V
- Voltage Reference Tolerance: ±0.4%, Typ @ 25°C (TL431B)
- Low Dynamic Output Impedance, 0.22Ω Typical
- Sink Current Capability of 1.0 mA to 100 mA
- Equivalent Full-Range Temperature Coefficient of 50 ppm/°C Typical
- Temperature Compensated for Operation over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- NCV/SCV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

This is an internally modified SOIC–8 package. Pins 2, 3, 6 and 7 are electrically common to the die attach flag. This internal lead frame modification increases power dissipation capability when appropriately mounted on a printed circuit board. This modified package conforms to all external dimensions of the standard SOIC–8 package.

ORDERING INFORMATION

See detailed ordering and shipping information on page 13 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 14 of this data sheet.

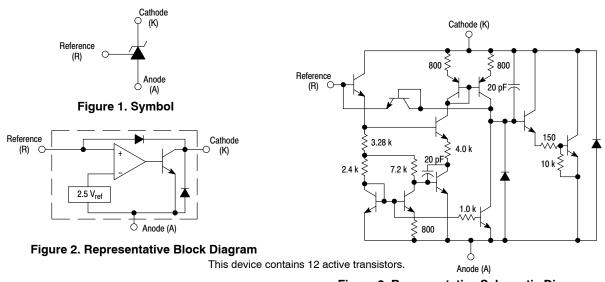


Figure 3. Representative Schematic Diagram Component values are nominal

MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)

Rating	Symbol	Value	Unit
Cathode to Anode Voltage	V _{KA}	37	V
Cathode Current Range, Continuous	۱ _K	-100 to +150	mA
Reference Input Current Range, Continuous	I _{ref}	-0.05 to +10	mA
Operating Junction Temperature	Т _Ј	150	°C
Operating Ambient Temperature Range	T _A		°C
TL431I, TL431AI, TL431BI		-40 to +85	
TL431C, TL431AC, TL431BC		0 to +70	
NCV431AI, NCV431B, TL431BV, SCV431AI		-40 to +125	
Storage Temperature Range	T _{stg}	-65 to +150	°C
Total Power Dissipation @ $T_A = 25^{\circ}C$	P _D		W
Derate above 25°C Ambient Temperature			
D, LP Suffix Plastic Package		0.70	
P Suffix Plastic Package		1.10	
DM Suffix Plastic Package		0.52	
Total Power Dissipation @ $T_C = 25^{\circ}C$	PD		W
Derate above 25°C Case Temperature			
D, LP Suffix Plastic Package		1.5	
P Suffix Plastic Package		3.0	
ESD Rating (Note 1)			V
Human Body Model per JEDEC JESD22-A114F	HBM	>2000	
Machine Model per JEDEC JESD22-A115C Charged Device Model per JEDEC JESD22-C101E		>200 >500	
Charged Device Model per JEDEC JESD22-C101E	CDM	>500	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This device contains latch-up protection and exceeds ±100 mA per JEDEC standard JESD78.

RECOMMENDED OPERATING CONDITIONS

Condition	Symbol	Min	Max	Unit
Cathode to Anode Voltage	V _{KA}	V _{ref}	36	V
Cathode Current	١ _K	1.0	100	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	D, LP Suffix Package	P Suffix Package	DM Suffix Package	Unit
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	178	114	240	°C/W
Thermal Resistance, Junction-to-Case	$R_{ ext{ heta}JC}$	83	41	_	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C, unless otherwise noted.)

	TL431I					TL431C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
$ \begin{array}{l} \mbox{Reference Input Voltage (Figure 1)} \\ V_{KA} = V_{ref}, \ I_K = 10 \ mA \\ T_A = 25^\circ C \\ T_A = T_{low} \ to \ T_{high} \ (Note 2) \end{array} $	V _{ref}	2.44 2.41	2.495	2.55 2.58	2.44 2.423	2.495	2.55 2.567	V	
Reference Input Voltage Deviation Over Temperature Range (Figure 1, Notes 3, 4) V_{KA} = V_{ref} , I_K = 10 mA	ΔV_{ref}	-	7.0	30	-	3.0	17	mV	
$\begin{array}{l} \mbox{Ratio of Change in Reference Input Voltage to Change} \\ \mbox{in Cathode to Anode Voltage} \\ \mbox{I}_{K} = 10 \mbox{ mA (Figure 2),} \\ \mbox{$\Delta V_{KA} = 10 \mbox{ V to V_{ref}}$} \\ \mbox{$\Delta V_{KA} = 36 \mbox{ V to 10 \mbox{ V}}$} \end{array}$	$\frac{\Delta V_{ref}}{\Delta V_{KA}}$		-1.4 -1.0	-2.7 -2.0		-1.4 -1.0	-2.7 -2.0	mV/V	
$ \begin{array}{l} \mbox{Reference Input Current (Figure 2)} \\ I_K = 10 \mbox{ mA, R1} = 10 \mbox{ k, R2} = \infty \\ T_A = 25^\circ \mbox{C} \\ T_A = T_{low} \mbox{ to } T_{high} \mbox{ (Note 2)} \end{array} $	I _{ref}		1.8 _	4.0 6.5		1.8 _	4.0 5.2	μΑ	
Reference Input Current Deviation Over Temperature Range (Figure 2, Note 3) $I_K = 10 \text{ mA}, \text{ R1} = 10 \text{ k}, \text{ R2} = \infty$	ΔI_{ref}	_	0.8	2.5	-	0.4	1.2	μΑ	
Minimum Cathode Current For Regulation $V_{KA} = V_{ref}$ (Figure 1)	I _{min}	-	0.5	1.0	-	0.5	1.0	mA	
Off–State Cathode Current (Figure 3) $V_{KA} = 36 V, V_{ref} = 0 V$	I _{off}	-	20	1000	-	20	1000	nA	
Dynamic Impedance (Figure 1, Note 5) $V_{KA} = V_{ref}, \Delta I_K = 1.0 \text{ mA to } 100 \text{ mA}, f \le 1.0 \text{ kHz}$	Z _{KA}	-	0.22	0.5	-	0.22	0.5	Ω	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. T_{low} = -40°C for TL431AIP TL431AIP, TL431IP, TL431IP, TL431BID, TL431BIP, TL431BIP, TL431AIDM, TL431AIDM, TL431AIDM, TL431BIDM; = 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM

T_{high} = +85°C for TL431AIP, TL431AIP, TL431IP, TL431IP, TL431BID, TL431BIP, TL431BIP, TL431BIDM, TL431AIDM, TL431AIDM, TL431BIDM = +70°C for TL431ACP, TL431ACP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM

3. Guaranteed by design.

 The deviation parameter ΔV_{ref} is defined as the difference between the maximum and minimum values obtained over the full operating ambient temperature range that applies.

 $V_{ref} \max_{V_{ref} \min} \frac{DV_{ref} = V_{ref} \max}{\Delta T_A = T_2 - T_1}$ input voltage, αV_{ref} is defined as: $V_{ref} \frac{ppm}{^{\circ}C} = \frac{\left(\frac{\Delta V_{ref}}{V_{ref} @ 25^{\circ}C}\right) \times 10^6}{\Delta T_A} = \frac{\Delta V_{ref} \times 10^6}{\Delta T_A (V_{ref} @ 25^{\circ}C)}$

The average temperature coefficient of the reference input voltage, αV_{ref} is defined as: V_{ref}

 αV_{ref} can be positive or negative depending on whether V_{ref} Min or V_{ref} Max occurs at the lower ambient temperature. (Refer to Figure 6.)

Example : ΔV_{ref} = 8.0 mV and slope is positive,

$$V_{ref} @ 25^{\circ}C = 2.495 \text{ V}, \Delta T_{A} = 70^{\circ}C$$
 $\alpha V_{ref} = \frac{0.008 \times 10^{6}}{70 (2.495)} = 45.8 \text{ ppm/}^{\circ}C$

5. The dynamic impedance Z_{KA} is defined as: $|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$. When the device is programmed with two external resistors, R1 and R2,

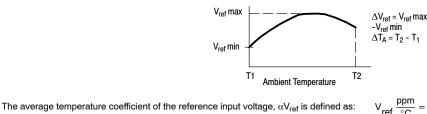
(refer to Figure 2) the total dynamic impedance of the circuit is defined as: $|Z_{KA}'| \approx |Z_{KA}| \left(1 + \frac{R1}{R2}\right)$

ELECTRICAL CHARACTERISTICS (T_A = 25°C, unless otherwise noted.)

		TL431AI / NCV431AI/ SCV431AI		TL431AC			TL431BC / TL431BI / TL431BV / NCV431BV				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Input Voltage (Figure 1) $V_{KA} = V_{ref}$, $I_K = 10 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = T_{low}$ to T_{high} (Note 6)	V _{ref}	2.47 2.44	2.495 -	2.52 2.55	2.47 2.453	2.495 -	2.52 2.537	2.485 2.475	2.495 2.495	2.505 2.515	V
Reference Input Voltage Deviation Over Temperature Range (Figure 1, Notes 7, 8) V_{KA} = V_{ref} , I_K = 10 mA	ΔV_{ref}	-	7.0	30	_	3.0	17	-	3.0	17	mV
$\begin{array}{l} \mbox{Ratio of Change in Reference Input Voltage to} \\ \mbox{Change in Cathode to Anode Voltage} \\ \mbox{I}_{K} = 10 \mbox{ mA (Figure 2),} \\ \mbox{$\Delta V_{KA} = 10 \mbox{ V to } V_{ref}$} \\ \mbox{$\Delta V_{KA} = 36 \mbox{ V to } 10 \mbox{ V} $} \end{array}$	$\frac{\Delta V_{ref}}{\Delta V_{KA}}$		-1.4 -1.0	-2.7 -2.0		-1.4 -1.0	-2.7 -2.0		-1.4 -1.0	-2.7 -2.0	mV/V
$ \begin{array}{l} \mbox{Reference Input Current (Figure 2)} \\ I_K = 10 \mbox{ mA, R1} = 10 \mbox{ k, R2} = \infty \\ T_A = 25^\circ C \\ T_A = T_{low} \mbox{ to } T_{high} \mbox{ (Note 6)} \end{array} $	I _{ref}		1.8 _	4.0 6.5		1.8 -	4.0 5.2		1.1 -	2.0 4.0	μΑ
Reference Input Current Deviation Over Temperature Range (Figure 2, Note 7) $I_{K} = 10 \text{ mA}, \text{ R1} = 10 \text{ k}, \text{ R2} = \infty$	ΔI_{ref}	-	0.8	2.5	_	0.4	1.2	-	0.8	2.5	μA
Minimum Cathode Current For Regulation $V_{KA} = V_{ref}$ (Figure 1)	I _{min}	-	0.5	1.0	_	0.5	1.0	-	0.5	1.0	mA
Off–State Cathode Current (Figure 3) $V_{KA} = 36 V, V_{ref} = 0 V$	l _{off}	_	20	1000	_	20	1000	-	0.23	500	nA
Dynamic Impedance (Figure 1, Note 9) $V_{KA} = V_{ref}, \ \Delta I_{K} = 1.0 \ \text{mA to } 100 \ \text{mA}$ f \leq 1.0 kHz	Z _{KA}	_	0.22	0.5	_	0.22	0.5	-	0.14	0.3	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. T_{low} = -40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431BILP, TL431BV, TL431AIDM, TL431IDM,


TL431BIDM, NCV431AIDMR2G, NCV431AIDR2G, NCV431BVDR2G, SCV431AIDMR2G = 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM, SCV431AIDMR2G

T_{high} = +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BIP, TL431BIP, TL431BIP, TL431AIDM, TL431AIDM, TL431AIDM, TL431AIDM, TL431BIDM = +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM

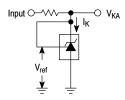
= +125°C TL431BV, NCV431AIDMR2G, NCV431AIDR2G, NCV431BVDMR2G, NCV431BVDR2G, SCV431AIDMR2G

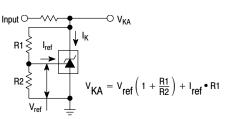
7. Guaranteed by design.

 The deviation parameter ΔV_{ref} is defined as the difference between the maximum and minimum values obtained over the full operating ambient temperature range that applies.

$$\frac{\left(\frac{\Delta V_{\text{ref}}}{V_{\text{ref}} @ 25^{\circ}\text{C}}\right) \times 10^{6}}{\Delta T_{\text{A}}} = \frac{\Delta V_{\text{ref}} \times 10^{6}}{\Delta T_{\text{A}} (V_{\text{ref}} @ 25^{\circ}\text{C})}$$

 αV_{ref} can be positive or negative depending on whether V_{ref} Min or V_{ref} Max occurs at the lower ambient temperature. (Refer to Figure 6.)


Example : $\Delta V_{ref} = 8.0 \text{ mV}$ and slope is positive, $V_{ref} @ 25^{\circ}C = 2.495 \text{ V}, \Delta T_A = 70^{\circ}C$


$$\alpha V_{ref} = \frac{0.008 \times 10^6}{70 (2.495)} = 45.8 \text{ ppm/}^{\circ}\text{C}$$

9. The dynamic impedance Z_{KA} is defined as $|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$ When the device is programmed with two external resistors, R1 and R2, (refer

to Figure 2) the total dynamic impedance of the circuit is defined as: $|Z_{KA}'| \approx |Z_{KA}| \left(1 + \frac{R1}{R2}\right)$

10. NCV431AIDMR2G, NCV431AIDR2G, NCV431BVDMR2G, NCV431BVDR2G, SCV431AIDMR2G T_{low} = -40°C, T_{high} = +125°C. NCV prefix is for automotive and other applications requiring unique site and control change requirements.

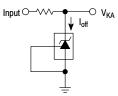
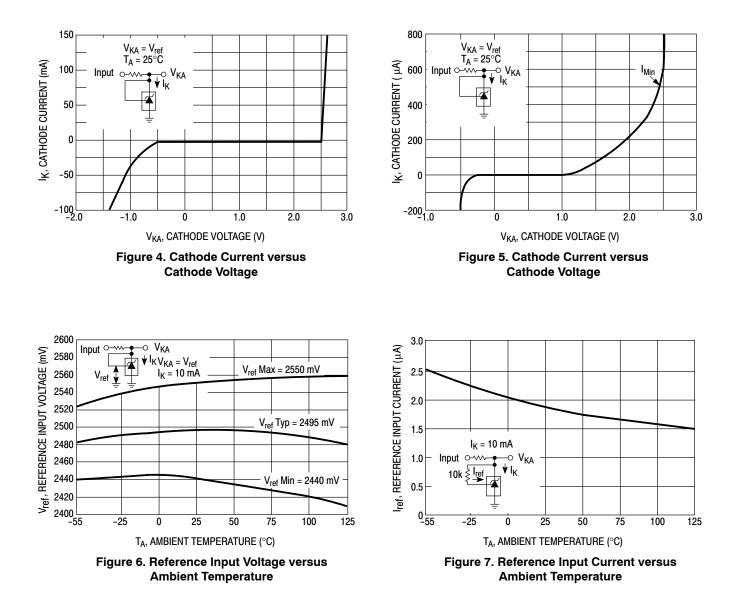
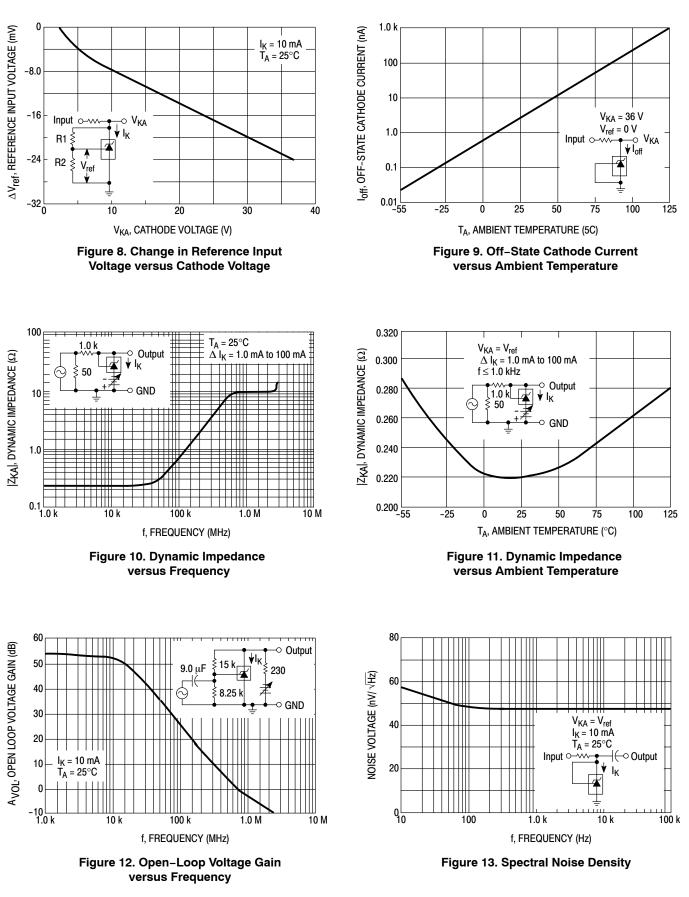




Figure 1. Test Circuit for $V_{KA} = V_{ref}$

Figure 2. Test Circuit for V_{KA} > V_{ref}

Figure 3. Test Circuit for Ioff

TL431A, B Series, NCV431A, B Series, SCV431A

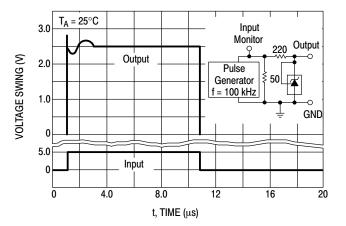


Figure 14. Pulse Response

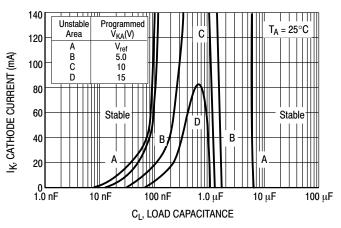


Figure 15. Stability Boundary Conditions

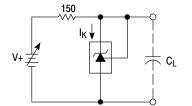


Figure 16. Test Circuit For Curve A of Stability Boundary Conditions

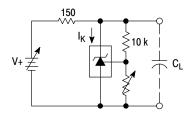


Figure 17. Test Circuit For Curves B, C, And D of Stability Boundary Conditions

TYPICAL APPLICATIONS

TL431A, B Series, NCV431A, B Series, SCV431A

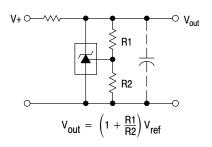


Figure 18. Shunt Regulator

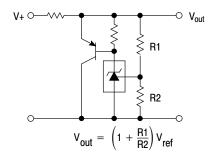


Figure 19. High Current Shunt Regulator

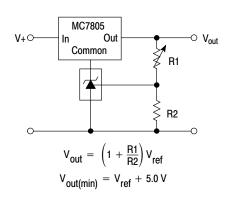
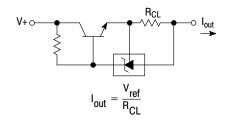



Figure 20. Output Control for a Three–Terminal Fixed Regulator

Figure 22. Constant Current Source

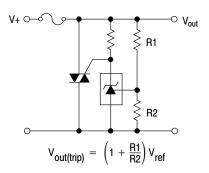


Figure 24. TRIAC Crowbar

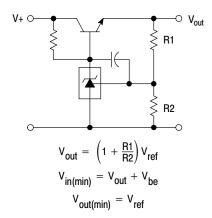


Figure 21. Series Pass Regulator

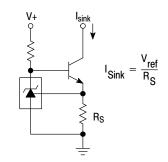


Figure 23. Constant Current Sink

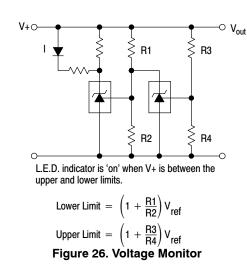
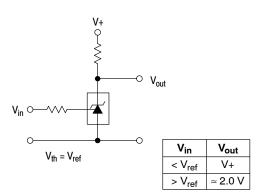




Figure 25. SRC Crowbar

Figure 27. Single–Supply Comparator with Temperature–Compensated Threshold

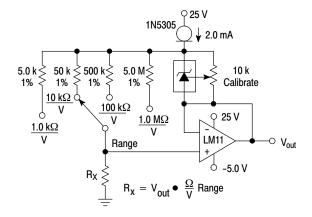


Figure 28. Linear Ohmmeter

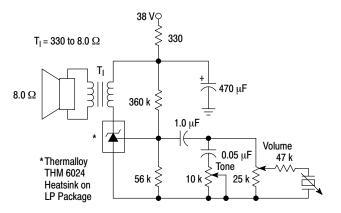


Figure 29. Simple 400 mW Phono Amplifier

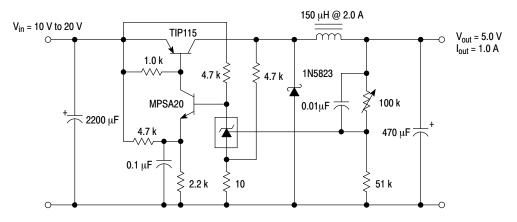


Figure 30. High Efficiency Step-Down Switching Converter

Test	Conditions	Results
Line Regulation	V_{in} = 10 V to 20 V, I_o = 1.0 A	53 mV (1.1%)
Load Regulation	V_{in} = 15 V, I_{o} = 0 A to 1.0 A	25 mV (0.5%)
Output Ripple	V _{in} = 10 V, I _o = 1.0 A	50 mVpp P.A.R.D.
Output Ripple	$V_{in} = 20 \text{ V}, I_o = 1.0 \text{ A}$	100 mVpp P.A.R.D.
Efficiency	V _{in} = 15 V, I _o = 1.0 A	82%

APPLICATIONS INFORMATION

The TL431 is a programmable precision reference which is used in a variety of ways. It serves as a reference voltage in circuits where a non-standard reference voltage is needed. Other uses include feedback control for driving an optocoupler in power supplies, voltage monitor, constant current source, constant current sink and series pass regulator. In each of these applications, it is critical to maintain stability of the device at various operating currents and load capacitances. In some cases the circuit designer can estimate the stabilization capacitance from the stability boundary conditions curve provided in Figure 15. However, these typical curves only provide stability information at specific cathode voltages and at a specific load condition. Additional information is needed to determine the capacitance needed to optimize phase margin or allow for process variation.

A simplified model of the TL431 is shown in Figure 31. When tested for stability boundaries, the load resistance is 150 Ω . The model reference input consists of an input transistor and a dc emitter resistance connected to the device anode. A dependent current source, Gm, develops a current whose amplitude is determined by the difference between the 1.78 V internal reference voltage source and the input transistor emitter voltage. A portion of Gm flows through compensation capacitance, C_{P2}. The voltage across C_{P2} drives the output dependent current source, Go, which is connected across the device cathode and anode.

Model component values are:

 $V_{ref} = 1.78 V$

 $Gm = 0.3 + 2.7 \exp(-I_C/26 mA)$

where I_C is the device cathode current and Gm is in mhos

Go = 1.25 (V_{cp}2) µmhos.

Resistor and capacitor typical values are shown on the model. Process tolerances are $\pm 20\%$ for resistors, $\pm 10\%$ for capacitors, and $\pm 40\%$ for transconductances.

An examination of the device model reveals the location of circuit poles and zeroes:

P1 =
$$\frac{1}{2\pi R_{GM} C_{P1}} = \frac{1}{2\pi * 1.0 M * 20 pF} = 7.96 \text{ kHz}$$

P2 =
$$\frac{1}{2\pi R_{P2}C_{P2}} = \frac{1}{2\pi * 10 M * 0.265 pF} = 60 \text{ kHz}$$

Z1 = $\frac{1}{2\pi R_{Z1}C_{P1}} = \frac{1}{2\pi * 15.9 \text{ k} * 20 pF} = 500 \text{ kHz}$

In addition, there is an external circuit pole defined by the load:

$$\mathsf{P}_{\mathsf{L}} = \frac{1}{2\pi \,\mathsf{R}_{\mathsf{L}}\mathsf{C}_{\mathsf{L}}}$$

Also, the transfer dc voltage gain of the TL431 is:

$$G = G_M R_{GM} G_0 R_L$$

Example 1:

 $I_{C}^{}=$ 10 mA, $R_{L}^{}=\,$ 230 $\Omega,$ $C_{L}^{}=\,$ 0. Define the transfer gain .

The DC gain is:

(2

$$G = G_M R_{GM} GoR_L =$$

.138)(1.0 M)(1.25 μ)(230) = 615 = 56 dB

Loop gain = G
$$\frac{8.25 \text{ k}}{8.25 \text{ k} + 15 \text{ k}}$$
 = 218 = 47 dB

The resulting transfer function Bode plot is shown in Figure 32. The asymptotic plot may be expressed as the following equation:

$$Av = 615 \frac{\left(1 + \frac{jf}{500 \text{ kHz}}\right)}{\left(1 + \frac{jf}{8.0 \text{ kHz}}\right)\left(1 + \frac{jf}{60 \text{ kHz}}\right)}$$

The Bode plot shows a unity gain crossover frequency of approximately 600 kHz. The phase margin, calculated from the equation, would be 55.9 degrees. This model matches the Open–Loop Bode Plot of Figure 12. The total loop would have a unity gain frequency of about 300 kHz with a phase margin of about 44 degrees.

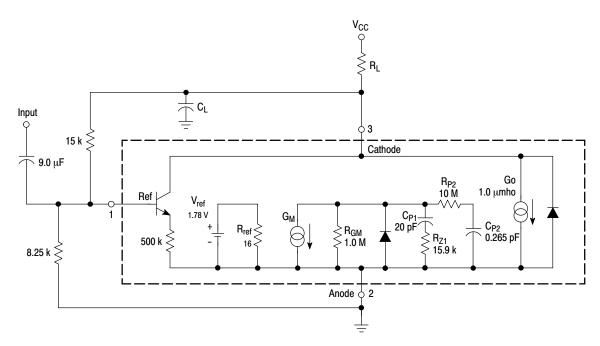


Figure 31. Simplified TL431 Device Model

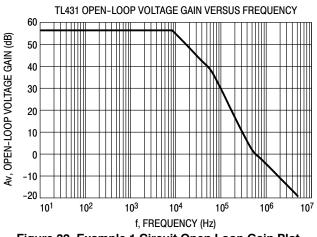


Figure 32. Example 1 Circuit Open Loop Gain Plot Example 2.

 $I_C = 7.5$ mA, $R_L = 2.2$ kΩ, $C_L = 0.01$ µF. Cathode tied to reference input pin. An examination of the data sheet stability boundary curve (Figure 15) shows that this value of load capacitance and cathode current is on the boundary. Define the transfer gain.

The DC gain is:

$$G = G_M R_{GM} Go R_L =$$

 $(2.323)(1.0 \text{ M})(1.25 \mu)(2200) = 6389 = 76 \text{ dB}$

The resulting open loop Bode plot is shown in Figure 33. The asymptotic plot may be expressed as the following equation:

$$Av = 615 \frac{\left(1 + \frac{jf}{500 \text{ kHz}}\right)}{\left(1 + \frac{jf}{8.0 \text{ kHz}}\right)\left(1 + \frac{jf}{60 \text{ kHz}}\right)\left(1 + \frac{jf}{7.2 \text{ kHz}}\right)}$$

Note that the transfer function now has an extra pole formed by the load capacitance and load resistance.

Note that the crossover frequency in this case is about 250 kHz, having a phase margin of about -46 degrees. Therefore, instability of this circuit is likely.

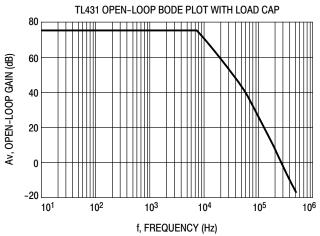


Figure 33. Example 2 Circuit Open Loop Gain Plot

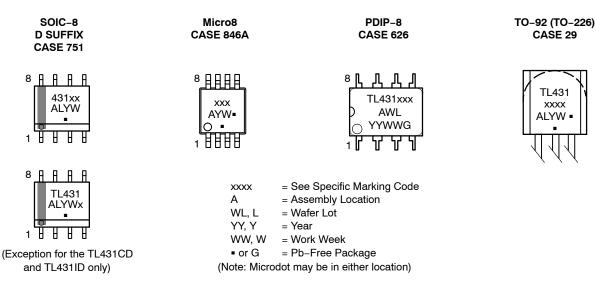
With three poles, this system is unstable. The only hope for stabilizing this circuit is to add a zero. However, that can only be done by adding a series resistance to the output capacitance, which will reduce its effectiveness as a noise filter. Therefore, practically, in reference voltage applications, the best solution appears to be to use a smaller value of capacitance in low noise applications or a very large value to provide noise filtering and a dominant pole rolloff of the system.

ORDERING INFORMATION

Device	Marking Code	Operating Temperature Range	Package Code	Shipping Information [†]	Tolerance	
TL431ACDG	AC				1.0%	
TL431BCDG	BC			98 Units / Rail	0.4%	
TL431CDG	С		SOIC-8		2.2%	
TL431ACDR2G	AC		(Pb-Free)		1.0%	
TL431BCDR2G	BC			2500 / Tape & Reel	0.4%	
TL431CDR2G	С				2.2%	
TL431ACDMR2G	TAC				1.0%	
TL431BCDMR2G	TBC		Micro8 (Pb-Free)	4000 / Tape & Reel	0.4%	
TL431CDMR2G	T–C		(1 D=1 100)		2.2%	
TL431ACPG	ACP				1.0%	
TL431BCPG	BCP		PDIP-8 (Pb-Free)	50 Units / Rail	0.4%	
TL431CPG	CP		(FD-ITEE)		2.2%	
TL431ACLPG	ACLP	0°C to 70°C			1.0%	
TL431BCLPG	BCLP			2000 Units / Bag	0.4%	
TL431CLPG	CLP			-	2.2%	
TL431ACLPRAG	ACLP				1.0%	
TL431BCLPRAG	BCLP				0.4%	
TL431CLPRAG	CLP			0000 / Tana & Daal	2.2%	
TL431ACLPREG	ACLP		TO–92 (Pb–Free)	2000 / Tape & Reel	1.0%	
TL431BCLPREG	BCLP		(FD-ITEE)		0.4%	
TL431CLPREG	CLP				2.2%	
TL431ACLPRPG	ACLP			2000 / Tape & Ammo Box	1.0%	
TL431BCLPRMG	BCLP				0.4%	
TL431CLPRMG	CLP			2000 / Fan-Fold	0.00/	
TL431CLPRPG	CLP				2.2%	
TL431AIDG	AI					1.0%
TL431BIDG	BI				98 Units / Rail	0.4%
TL431IDG	I		SOIC-8		2.2%	
TL431AIDR2G	AI		(Pb-Free)	, ,		1.0%
TL431BIDR2G	BI				2500s / Tape & Reel	0.4%
TL431IDR2G	l					2.2%
TL431AIDMR2G	TAI				1.0%	
TL431BIDMR2G	TBI		Micro8 (Pb-Free)	4000 / Tape & Reel	0.4%	
TL431IDMR2G	T–I		(FD-ITEE)		2.2%	
TL431AIPG	AIP				1.0%	
TL431BIPG	BIP		PDIP-8	50 Units / Rail	0.4%	
TL431IPG	IP	–40°C to 85°C	(Pb–Free)		2.2%	
TL431AILPG	AILP				1.0%	
TL431BILPG	BILP			2000 Units / Bag	0.4%	
TL431ILPG	ILP			-	2.2%	
TL431AILPRAG	AILP				1.0%	
TL431BILPRAG	BILP		TO-92		0.4%	
SC431ILPRAG	ILP		(Pb-Free)	2000 / Tape & Reel	0.001	
TL431ILPRAG	ILP				2.2%	
TL431AILPRMG	A	1 1				
TL431AILPRPG	AILP			2000 / Tape & Ammo Box	1.0%	
TL431ILPRPG	ILP				2.2%	

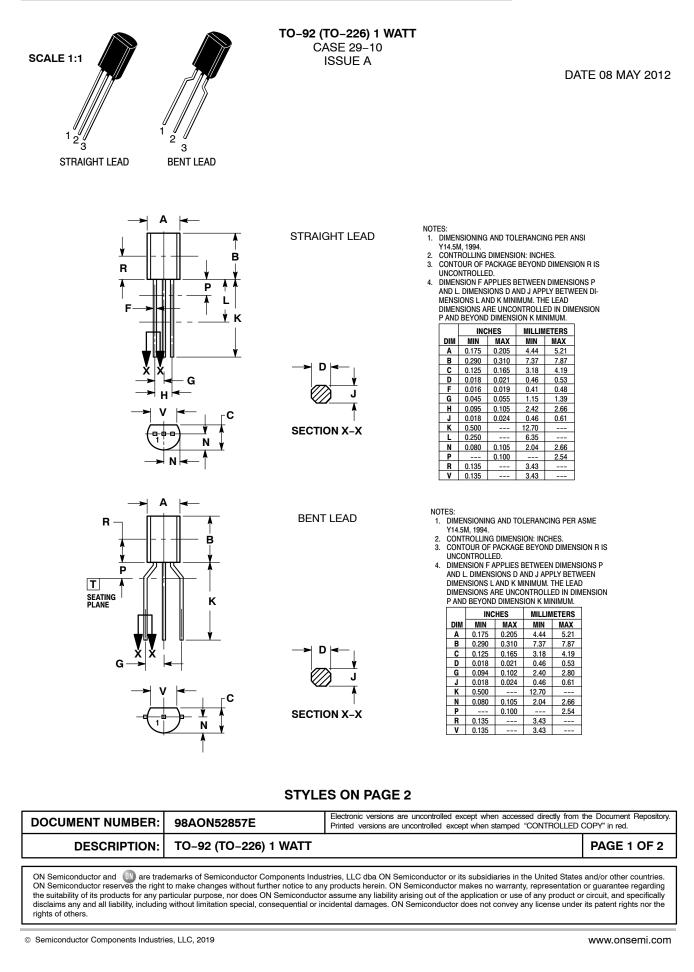
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV/SCV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.


ORDERING INFORMATION

Device	Marking Code	Operating Temperature Range	Package Code	Shipping Information [†]	Tolerance
TL431BVDG	BV		SOIC-8	98 Units / Rail	
TL431BVDR2G	DV	(Pb-Free)	(Pb-Free)	2500 / Tape & Reel	
TL431BVDMR2G	TBV		Micro8 (Pb–Free)	4000 / Tape & Reel	0.4%
TL431BVLPG	BVLP		TO-92	2000 Units / Bag	
TL431BVLPRAG	DVLP		(Pb-Free)	2000 / Tape & Reel	
TL431BVPG	BVP	-40°C to 125°C	PDIP-8 (Pb-Free)	50 Units / Rail	0.4%
NCV431AIDMR2G*	RAN	-40 0 10 125 0	Micro8	4000 / Tana & Daal	
SCV431AIDMR2G*	RAP		(Pb-Free)	4000 / Tape & Reel	1%
NCV431AIDR2G*	AV		SOIC-8 (Pb-Free)	2500 / Tape & Reel	1/0
NCV431BVDMR2G*	NVB		Micro8 (Pb–Free)	4000 / Tape & Reel	0.4%
NCV431BVDR2G*	BV		SOIC-8 (Pb-Free)	2500 / Tape & Reel	0.4%

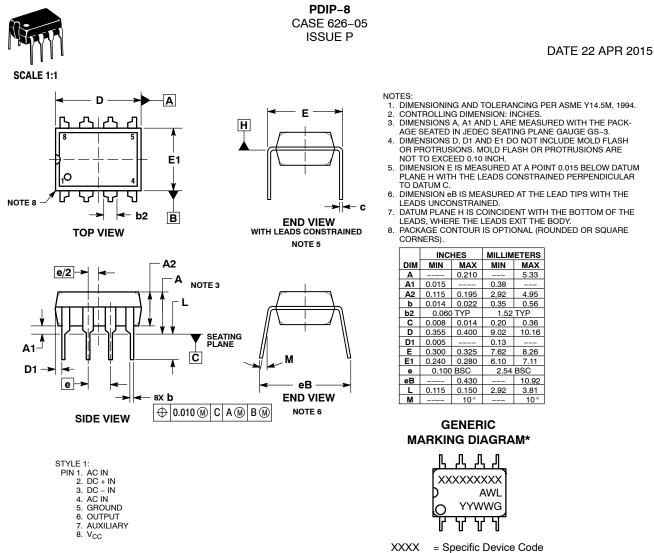
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


*NCV/SCV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

MARKING DIAGRAMS

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

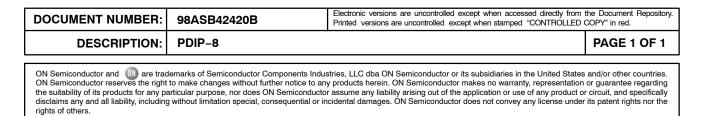
TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE A

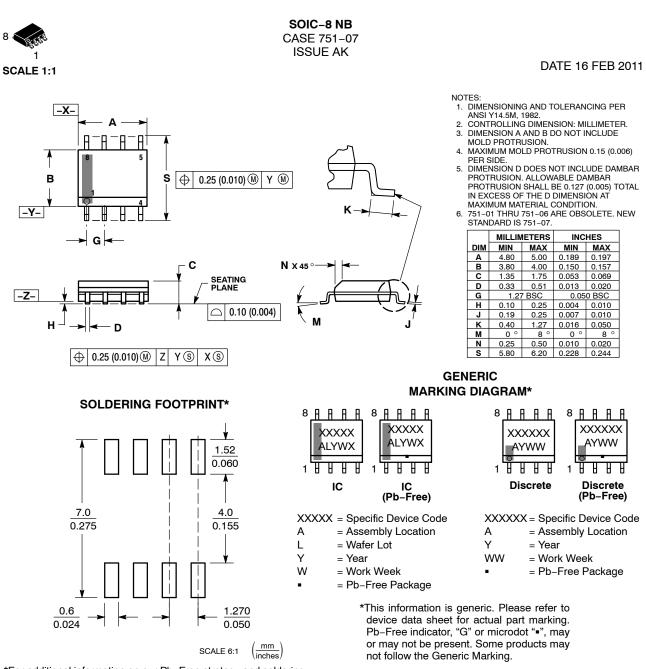

DATE 08 MAY 2012

	EMITTER BASE COLLECTOR								
	GATE SOURCE & SUBSTRATE DRAIN								
STYLE 11: PIN 1. 2. 3.	ANODE CATHODE & ANODE CATHODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1 Gate Main Terminal 2	STYLE 13: PIN 1. 2. 3.	ANODE 1 GATE CATHODE 2	STYLE 14: PIN 1. 2. 3.	EMITTER COLLECTOR BASE	STYLE 15: PIN 1. 2. 3.	ANODE 1 CATHODE ANODE 2
STYLE 16: PIN 1. 2. 3.	ANODE GATE CATHODE	STYLE 17: PIN 1. 2. 3.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE CATHODE NOT CONNECTED	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	STYLE 20: PIN 1. 2. 3.	NOT CONNECTED CATHODE ANODE
STYLE 21: PIN 1. 2. 3.	COLLECTOR EMITTER BASE	STYLE 22: PIN 1. 2. 3.	SOURCE GATE DRAIN	STYLE 23: PIN 1. 2. 3.	GATE SOURCE DRAIN	STYLE 24: PIN 1. 2. 3.	EMITTER Collector/Anode Cathode	STYLE 25: PIN 1. 2. 3.	MT 1 GATE MT 2
STYLE 26: PIN 1. 2. 3.	V _{CC} GROUND 2 OUTPUT	STYLE 27: PIN 1. 2. 3.	MT SUBSTRATE MT	STYLE 28: PIN 1. 2. 3.	CATHODE ANODE GATE	STYLE 29: PIN 1. 2. 3.	NOT CONNECTED ANODE CATHODE	STYLE 30: PIN 1. 2. 3.	DRAIN GATE SOURCE
STYLE 31: PIN 1. 2. 3.	GATE DRAIN SOURCE	STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN INPUT OUTPUT	STYLE 34: PIN 1. 2. 3.	INPUT Ground Logic	STYLE 35: PIN 1. 2. 3.	GATE COLLECTOR EMITTER

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 2				

ON Semiconductor and us are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.




A = Assembly Location

- WL = Wafer Lot
- YY = Year
- WW = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	DESCRIPTION: SOIC-8 NB					
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product on acidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically			

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR 3. 4. EMITTER EMITTER 5. BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: CATHODE 1 PIN 1. 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: PIN 1. GROUND BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC COMMON CATHODE/VCC 3 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. 4. DRAIN, #2 GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 DRAIN 1 7. 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. LINE 1 OUT 8. STYLE 27: PIN 1. ILIMIT 2 OVI 0 UVLO З. 4. INPUT+ 5. SOURCE SOURCE 6. SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: ANODE ANODE PIN 1. 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 3. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. 4. GATE 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

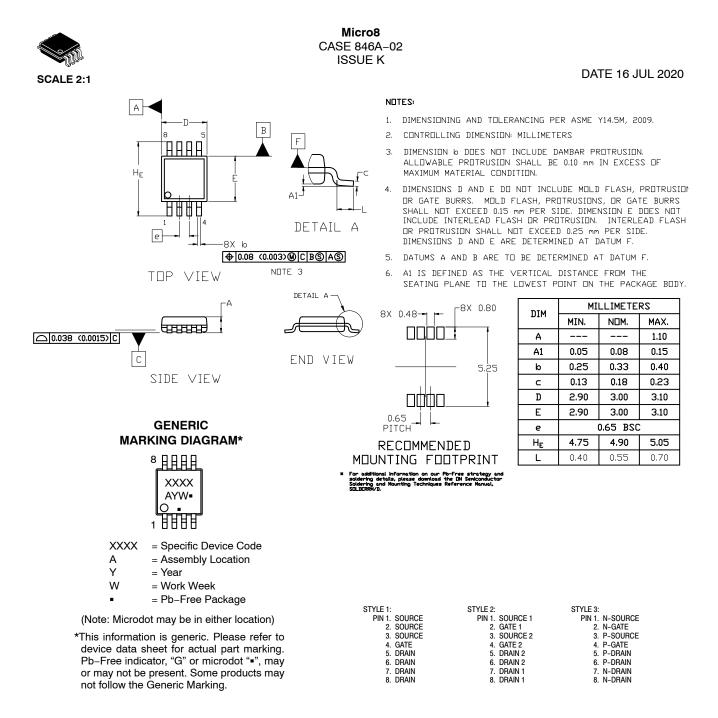
DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2				
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically				

SOURCE 1/DRAIN 2

7.

8. GATE 1

7.


8

rights of others

COLLECTOR, #1

COLLECTOR, #1

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	MICRO8		PAGE 1 OF 1
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: