

STD7LN80K5

N-channel 800 V, 0.95 Ω typ., 5 A MDmesh[™] K5 Power MOSFET in a DPAK package

Datasheet - production data

Features

Order code	V _{DS}	R _{DS(on)} max.	ID
STD7LN80K5	800 V	1.15 Ω	5 A

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STD7LN80K5	7LN80K5	DPAK	Tape and reel

DocID028774 Rev 1

This is information on a product in full production.

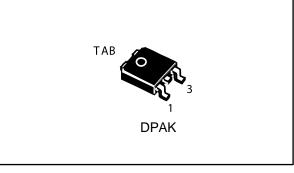


Figure 1: Internal schematic diagram

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK (TO-252) type A2 package information	10
	4.2	DPAK (TO-252) packing information	13
5	Rovisio	n history	15

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 30	V
Ι _D ⁽¹⁾	Drain current (continuous) at $T_c = 25 \ ^{\circ}C$	5	А
I _D ⁽¹⁾	Drain current (continuous) at T _c = 100 °C	3.4	А
I _D ⁽²⁾	Drain current (pulsed)	20	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	85	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	4.5	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Tj	Operating junction temperature	- 55 10 150	C

Notes:

 $^{\left(1\right) }Limited$ by maximum junction temperature.

 $^{\rm (2)}{\rm Pulse}$ width limited by safe operating area.

 $^{(3)}I_{SD} \leq 5$ A, di/dt \leq 100 A/µs; V_{DS peak} < V_{(BR)DSS}, V_{DD}{=}640 V

 $^{(4)}V_{DS} \le 640 \text{ V}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.47	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W

Notes:

 $^{(1)}\!When$ mounted on FR-4 board of 1 inch², 2 oz Cu

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by $T_{jmax})$	1.5	А
E _{AS}	(Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$; $V_{DD} = 50$ V)	200	mJ

2 **Electrical characteristics**

 $T_C = 25$ °C unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	800			V
I _{DSS}	Zero gate voltage Drain current	$V_{GS} = 0 V, V_{DS} = 800 V$			1	μA
		$V_{GS} = 0 V, V_{DS} = 800 V,$ $T_{C} = 125 \text{ °C}$			50	μA
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±25 V			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V_{GS} = 10 V, I _D = 2.5 A		0.95	1.15	Ω

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	270	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	22	-	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	0.5	-	pF
$C_{o(er)}^{(1)}$	Equivalent capacitance energy related	V_{DS} = 0 to 640 V, V_{GS} = 0 V	-	17	-	nC
Co(tr) ⁽²⁾	Equivalent capacitance time related		-	48	-	nC
R_{g}	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	7.5	-	Ω
Q_g	Total gate charge	V_{DD} = 640 V, I_D = 5 A, V_{GS} = 10 V (see Figure 15: "Test circuit for gate charge	-	12	-	nC
Q_{gs}	Gate-source charge		-	2.6	-	nC
Q_{gd}	Gate-drain charge	behavior")	-	8.6	-	nC

Notes:

 $^{(1)}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as Coss when VDs increases from 0 to 80% V_{DSS}

 $^{(2)}\mbox{Time}$ related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	V_{DD} = 400 V, I_D = 2.5 A, R_G = 4.7 Ω ,	-	9.3	-	ns	
tr	Rise time	V _{GS} = 10 V (see Figure 14: "Test circuit for resistive load switching	-	6.7	-	ns	
t _{d(off)}	Turn-off-delay time	times" and Figure 19: "Switching time	-	23.6	-	ns	
t _f	Fall time	waveform")	-	17.4	-	ns	

Table 7: Switching times

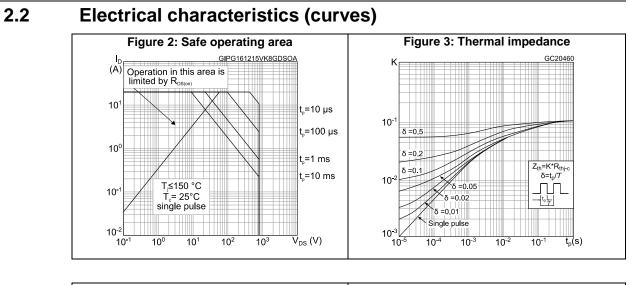
DocID028774 Rev 1	
-------------------	--

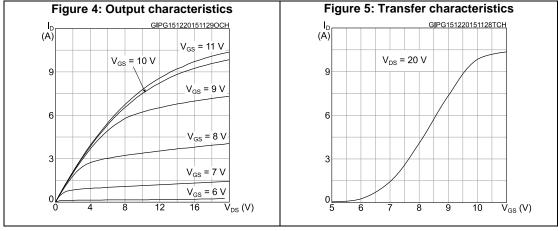
Electrical characteristics

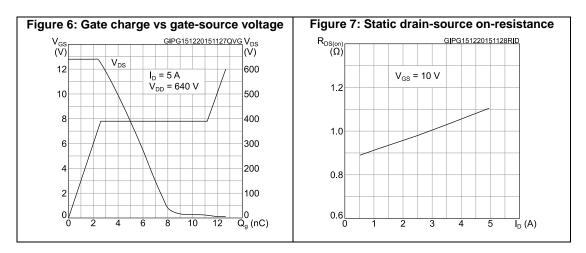
Table 8: Source drain diode							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
I _{SD}	Source-drain current		-		5	А	
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		20	А	
V _{SD} ⁽²⁾	Forward on voltage	I_{SD} = 5 A, V_{GS} = 0 V,	-		1.6	V	
t _{rr}	Reverse recovery time	$I_{SD} = 5$ A, di/dt = 100 A/µs, $V_{DD} = 60$ V (see Figure 16: "Test circuit for inductive load	-	276		ns	
Q _{rr}	Reverse recovery charge		-	2.13		μC	
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	15.4		А	
t _{rr}	Reverse recovery time	I _{SD} = 5 A, di/dt = 100 A/µs,	-	402		ns	
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{j} = 150 \text{ °C}$ (see <i>Figure 16: "Test circuit for</i>	-	2.79		μC	
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	13.9		А	

Notes:

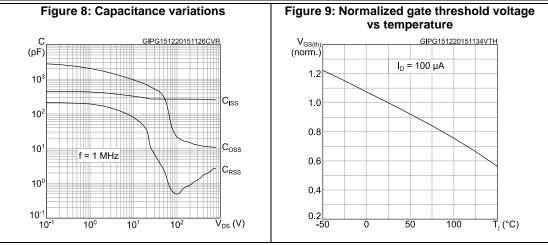
 $^{(1)}\mbox{Pulse}$ width is limited by safe operating area

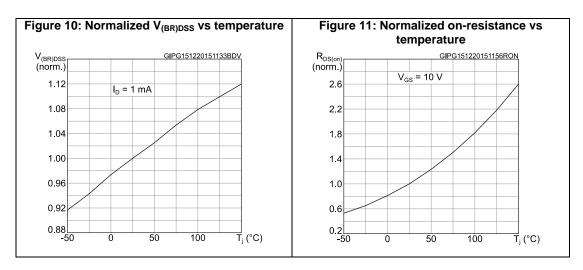

 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

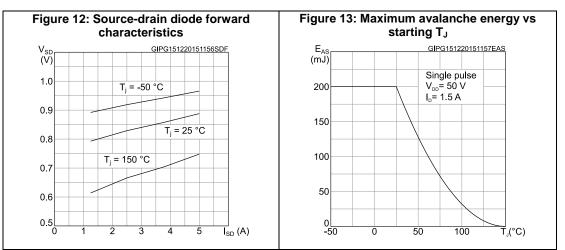

Table 9: Gate-source Zener diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$	30	-		V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

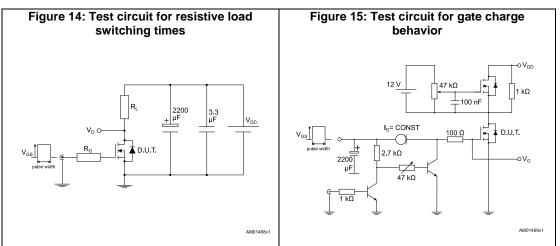


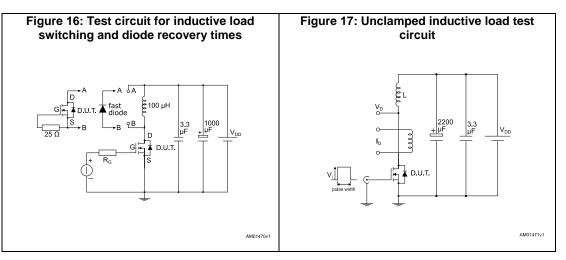


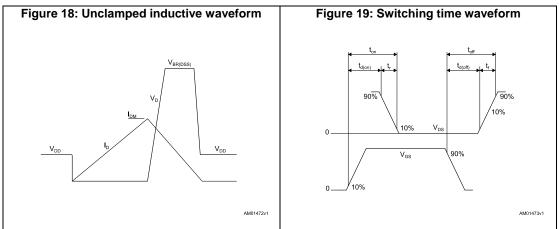


STD7LN80K5

Electrical characteristics





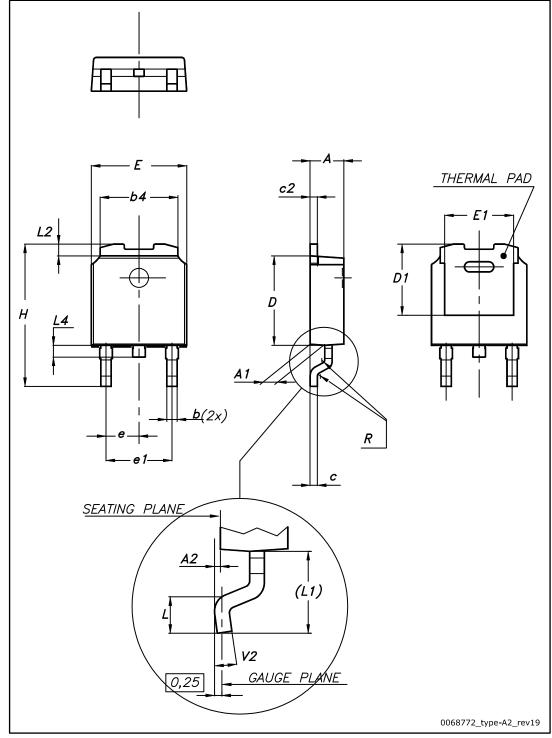


57

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

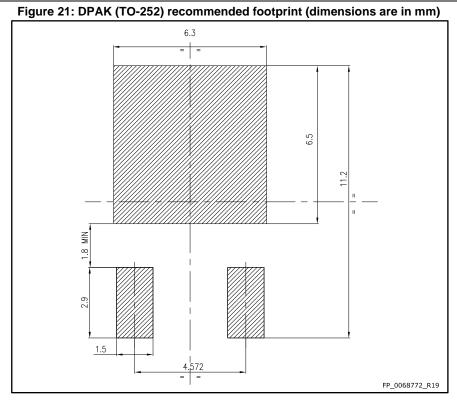


Package information

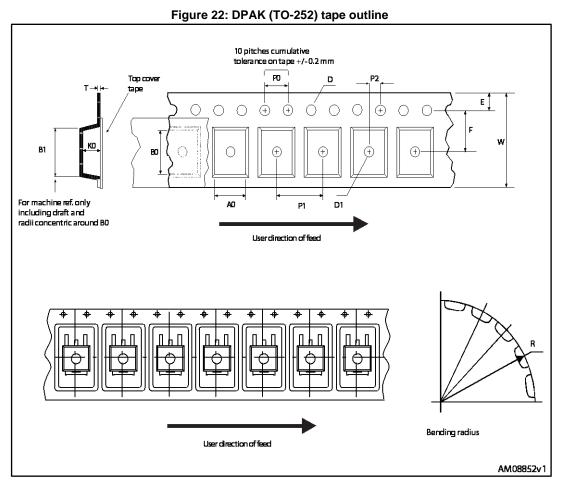
4.1 DI

DPAK (TO-252) type A2 package information

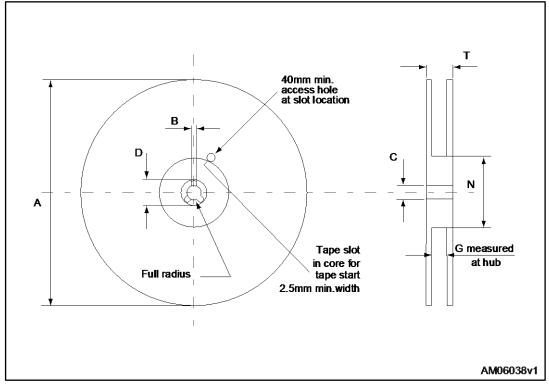
Figure 20: DPAK (TO-252) type A2 package outline


STD7LN80K5

K5			Package information	
	Table 10: DPAK (TO-252	2) type A2 mechanical da	ata	
Dim.	mm			
Dim.	Min.	Тур.	Max.	
А	2.20		2.40	
A1	0.90		1.10	
A2	0.03		0.23	
b	0.64		0.90	
b4	5.20		5.40	
С	0.45		0.60	
c2	0.48		0.60	
D	6.00		6.20	
D1	4.95	5.10	5.25	
E	6.40		6.60	
E1	5.10	5.20	5.30	
е	2.16	2.28	2.40	
e1	4.40		4.60	
Н	9.35		10.10	
L	1.00		1.50	
L1	2.60	2.80	3.00	
L2	0.65	0.80	0.95	
L4	0.60		1.00	
R		0.20		
V2	0°		8°	


Package information

STD7LN80K5



4.2 DPAK (TO-252) packing information

Figure 23: DPAK (TO-252) reel outline

	Table 11: DPAK (TO-252) tape and reel mechanical data				
Таре			Reel		
Dim	mm		Dim	mm	
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	A		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base qty.		2500
P1	7.9	8.1	Bulk qty.		2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Table 11: DPAK (TO-252) tape and reel mechanical dat

5 Revision history

Table 12: Document revision history

Date	Revision	Changes
16-Dec-2015	1	First release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STD7LN80K5