

Technical Data Sheet LED Lamps

• Customer:

Technical Data Sheet

PN: L 115 Series

For: IF=20mA

Contents

- 1.Features
- 2.Descriptions
- 3. Applications
- 4. Selection guide
- 5. Package dimensions
- 6. Absolute maximum rating
- 7. Electrical optical characteristics
- 8. Reliability
- 9. Typical electro-optical characteristics curves
- 10.Label form specification
- 11.Precautions
- 12.Notes

Customer confirm	Approved by	Checked by	Issued by

Jiangsu Wenrun Optoelectronic Co.,Ltd.

No.88 Weiyi Road Dingmao Development Zone Zhenjiang

Tel: 0511-85510030 Fax: 0511-85512861

Technical Data Sheet LED Lamps

Features:

- High speed response.
- High reliability and long life.
- Low power consumption.
- Available in red, blue, white , green, yellow colors.
- Suitable for pulse operation.

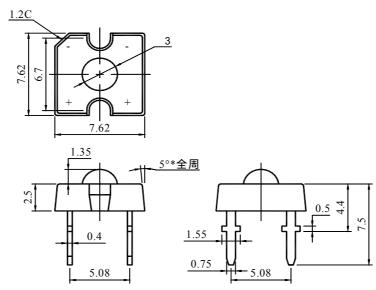
Descriptions:

- The LED lamps are available with different colors, intensities, epoxy colors, etc.
- The series specially designed for applications requiring higher brightness.
- Superior performance in outdoor environment.

Applications:

- Automotive exterior lighting.
- Solid state lighting and signaling.

Selection Guide:


Part No.		Lens Type	
rait No.	Material	Emitting Color	Lens Type
LUB115B3	InGaN	Ultra Super Blue	
LUG115B3	InGaN	Ultra Super Green	Water Clear
LBG115B3	InGaN	Ultra Super Bluish Green	

^{*}Pay attention to electrostatic (ESD)

Technical Data Sheet LED Lamps

Package Dimensions:

NOTES:

- 1, All dimensions are in millimetres (mm).
- 2. Tolerance is ± 0.25 mm(0.01") unless otherwise noted.
- 3、Protruded resin under flange is 1.5mm Max LED.

Absolute Maximum Rating (Ta=25)

D. (G 1.1		T I •		
Parameter	Symbol	Blue	Green	Bluish Green	Unit
Power Dissipation	P_d	120	120	120	mW
Pulse Forward Current	Ţ	100	100	100	A
(Duty 1/10 @ 1kHz)	I_{FP}	100			mA
DC Forward Current	I_{F}	30	30	30	mA
Reverse Voltage	V_R	5	5	5	V
Operating Temperature Range	Topr	-40 ~ +85			
Storage Temperature Range	Tstg	-40 ~ +100			
Soldering Temperature	Tsol	260 ± 5			

Notes: Soldering time 5 seconds.

 I_{FP} condition: pulse width 1 ms ,duty cycle 1/10. Tsol condition: 3mm for the base of the epoxy bulb.

Technical Data Sheet LED Lamps

Electrical Optical Characteristics (Ta=25)

		Ultra Super							
Parameter	Symbol	Blue		Green		Bluish Green		Unit	Test Condition
		Тур.	Max.	Тур.	Max.	Тур.	Max.		
Luminous Intensity	I_{V}	450		1200	-	1000		mcd	I _F =20mA
Forward Voltage	V_{F}	3.2	3.8	3.1	3.8	3.1	3.8	V	I _F =20mA
Reverse Current	I_R		50		50		50	uA	V _R =5V
Dominant Wavelength	d	470		525		505		nm	I _F =20mA
Peak Emission Wavelength	P	465		518		503		nm	I _F =20mA
Spectral Line Half Width		30		30		30		nm	I _F =20mA
Recommond forward current	I _F (rec)	20		20		20		mA	
Viewing Angle	2 1/2	90		90		90		deg	I _F =20mA

Notes: 1.Tolerance of Luminous Intensity ± 10%

- 2.Tolerance of Dominant Wavelength ± 2nm
- 3. Tolerance of Forward voltage ± 0.05 V
- 4. Luminous Intensity is measured by WENRUN's equipment on bare chips

Prepared date: Nov. 2009 http://www.wenrun.com Rev.: 4 Page 3of 8

Technical Data Sheet LED Lamps

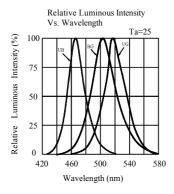
Reliability

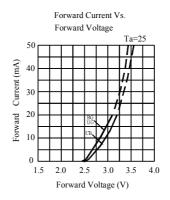
(1) Test Items and Conditions

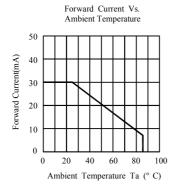
NO	Test Item	Test Conditions	Sample	Ac/ Re
1	Temperature Cycle	-40 ± 5 °C →25±5 °C →100±5 °C →25±5 °C (30min, 5min, 30min, 5min) 100 Cycles	20	0/1
2	High Temperature Storage Ta: 100±5°C Test time=1000HRS(-24HRS,+72HRS)		20	0/1
3	High Temperature And High Humidity Working	Ta: 85±5℃, R _H :85±5%, IF=20mA Test time=500HRS(-24HRS,+72HRS)	20	0/1
4	Low Temperature Storage	Ta: -40±5°C Test time=1000HRS(-24HRS,+72HRS)	20	0/1
5	Operating Life Test	Connect with a power IF=20mA Ta=Under room temperature Test time=1000HRS(-24HRS,+72HRS)	20	0/1
6	Solder Resistance	T.Sol=260±5°C one time Dwell Time=10±1Secs	20	0/1
7	Thermal Shock	-40±5°C→100±5°C (15min, 15min) 100 Cycles	20	0/1

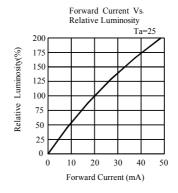
(2)Criteria of judging the damage

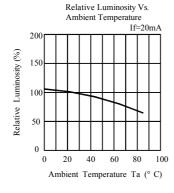
Item	Symbol	Test condition	Criteria for judgement		
Item	Symbol	Test condition	Min.	Max.	
Forward voltage	VF	IF=20 mA	/	U.S.L*1.1	
Reverse current	IR	VR=5V	/	15uA	
Luminous intensity	IV	IF=20 mA	L.S.L*0.7	/	
Wave length	λ D/ λ Ρ	IF=20 mA	/	U.S.L±2nm	
Appearance	/	View check	No mechanical damage		

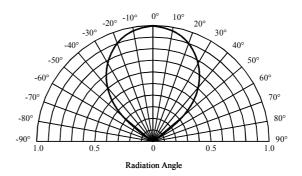

^{*} U.S.L: Upper standard level

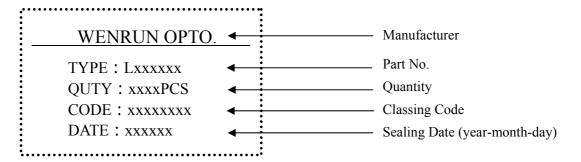

L.S.L: Lower standard level




Technical Data Sheet LED Lamps


Typical Electro-Optical Characteristics Curves:





Technical Data Sheet LED Lamps

Label Form Specification

Precautions In Use

A, Soldering Conditions

1. Maximum allowable soldering conditions are.

Solder dipping: 260 max., 5 seconds max., one time.

Soldering iron: 350 max., 5 seconds max., one time.

2. In soldering, do not put any stress on the lead frame, particularly when heated.

B, Lead frame Forming and Use

- 1. When mounting the LEDs onto a printed circuit board, the holes on the circuit board should be exactly aligned with the leads of the LEDs.
- 2. Please avoid conditions which may cause the LED to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering operations. It is recommended that the LEDs be used as soon as possible.
- 3. Please avoid rapid transitions in ambient temperature, especially, in high humidity environments.

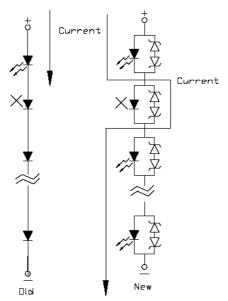
C, Storage

- 1. The LEDs should be stored at 30 or less and 70%RH or less after being shipped from Wenrun and year in a sealed container with a nitrogen atmosphere and moisture absorbent material.
- 2. Please avoid rapid transitions in ambient temperature, especially, in high humidity environments where condensation can occur.

D, Cleaning

- 1. When necessary, cheaning should occur only with isopropyl alcohol at room temperature for a duration of no more than one minute. Dry at room temperature before use..
- 2. Do not clean the LEDs ty the ultrasonic. When it is absolutely necessary, the influence of ultrasonic cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition. Ultrasonic cleaning shall be pre-qualified to ensure this will not cause damage to the LED.

E, Circuit Protection


- 1. Below the zener reference voltage V_Z , all the current flows through LED and as the voltage rises to V_Z , the zener diode "breakdown ." If the vlotage tries to rise above V_Z current flows through the zener branch to keep the voltage at exactly V_Z .
- 2. When the LED is connected using serial circuit, if either piece of LED is no light up but current can not flow through causing others to light down. In new design, the LEDis parallel with zener diode, if either

Prepared date: Nov. 2009 http://www.wenrun.com Rev.: 4 Page 6of 8

Technical Data Sheet LED Lamps

piece of LED is no light up but current can flow through causing others to light up

F. Heat Management

- 1. Heat management of LEDs must be taken into consideration during the design stage of LED application. The current should be de-rated appropriately by referring to the de-rating curve found in each product specification.
- 2. The temperature surrounding the LED in the application should be controlled. Please refer to the data sheet de-rating curve.

G, Static Electricity

- 1. These products are sensitive to static electricity charge, and users are required to handle with care. Particularly, if an current and or voltage which exceeds the Absolute Maximum Rating of Products is applied, the overflow in energy may cause damage to, or possibly result in electrical destruction of, the Products. The customer is requested to take adequate countermeasures against static electricity charge and surge when handling Products.
- 2. Proper grounding of Products, use of conductive mat, conductive working uniform and shoes, and conductive containers are effective against static electricity and surge.
- 3. Ground low-resistance areas where the product contacts, such as metal surfaces of the work platform, with a conductive mat (surface resistance 10^6 - 10^8).
- 4. A tip of soldering iron is requested to be grounded. An ionizer should also be installed where risk of static generation is high.

Prepared date: Nov. 2009 http://www.wenrun.com Rev.: 4 Page 7of 8

Technical Data Sheet LED Lamps

Notes:

- 1. Above specification may be changed without notice. We will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for the specification sheets. We assume no responsibility for any damage resulting from use of the product which does not comply with the instructions included in the specification sheets.

Prepared date: Nov. 2009 http://www.wenrun.com Rev.: 4 Page 8of 8